在全球范围内,能源的使用状况都不容忽视。节约能源和开发新能源已成为各国能源发展的基本问题。
传统的化石能源使用带来了诸多的问题,不仅造成了环境污染和温室效应,使得物种减少,过于依赖化石能源还会因能源危机,价格上升而让企业生产陷入困难。
机器学习在能源利用上也发挥了重要的作用,例如以下的功能:
预测性维护——使用了机器学习的 能够分析历史存储的数据和实时数据,已确定建筑中哪些系统和子系统在未来一段时间内会发生故障,从而提前预测可能出现的故障,提高设备的整体效率,节省高额成本。
管理用电平衡——能够监测用电系统的异常变化和各设备的状态,减少电能浪费。通过对设备的检查、调整、保养、润滑和维修,减少设备的磨损,降低故障率,提高设备的使用效率。
能源需求预测—— 可以监测日常客户对能源的使用规律,结合机器学习来优化能源使用的同时,还能对未来电能使用做出预测,以便做出合理的能源利用规划。
总体而言,能耗监测新系统能够提高公共部门和机构对能源效益的认识,通过科学管理和新技术,促进能源的合理有效利用,提高能源使用效率,避免浪费。
更多精彩文章,点击下方链接:
扫码添加微信,一对一咨询产品、免费报价